The Optimal Number of Firms in a Venture Capitalist’s Portfolio

Vesa Kanniainen and Christian Keuschnigg

Economic Series No. 0012
September 14, 2000
The Optimal Number of Firms in a Venture Capitalist’s Portfolio

VESKA KANNIIAINE AND CHRISTIAN KEUSCHNIGG*

October 10, 2000

Abstract

A venture capitalist faces a trade-off between the extent of managerial advice allocated to each start-up and the total number of firms advised. Diminishing returns to advice per firm call for a larger portfolio. As advice gets diluted, further expansion of the portfolio eventually becomes unprofitable.

Keywords: venture capital finance, double sided moral hazard, company portfolio.

JEL Codes: D82, G24, G32, L19

1 Introduction

It is a stylized fact that a typical portfolio of a venture capitalist (VC) includes several firms, although a limited number of them [see Gorman and Sahlman (1989), Sahlman (1990), Norton and Tenenbaum (1993) and Reid, Terry and Smith (1997). Gompers and Lerner (1999) summarize recent research on venture capital]. How many start-ups should

*Vesa Kanniainen, Department of Economics, P.O.Box 54, Fin-00014 University of Helsinki, Finland, and CESifo; Christian Keuschnigg, Department of Economics (FR 1.2), University of Saarland, P.O.Box 151 150, D-66041 Saarbruecken, Germany, CEPR and CESifo.
a VC include in her portfolio? We argue that the optimal company portfolio results from a trade-off between the number of firms included and the advisory effort allocated to each one. With diminishing returns of advice in each firm, it is better to expand the number of companies rather than concentrating advice on a single project. On the other hand, the VC’s effort cost increases progressively as more firms are included. Advice is easily stretched too thin, thereby reducing survival chances of all firms in the portfolio. When projects become riskier, the VC must cede a higher profit share to entrepreneurs to secure their effort which is critical for survival. With her own profit share eroded, the VC eventually finds it unattractive to further expand the portfolio. In expositing a simple model of VC activity with double sided moral hazard, our analysis draws on Repullo and Suarez (1999), Casamatta (1999) and Strobel (2000). These authors assume, like all other contributions in this field, that a VC finances only one entrepreneur.

2 A Simple Model

Venture Capital Activity: We assume that each project yields \(R > 0 \) if successful and zero if it fails. An entrepreneur pursues exactly one project, all being identical. In exchange for a profit share \(1 - s_i \), the VC must finance the entire start-up cost \(I \) of \(i = 1, \ldots, n \) symmetric projects since entrepreneurs have no own resources by assumption. Apart from supplying funds, the VC provides managerial assistance \(a_i \). The entrepreneur’s contribution \(e_i \in \{0, 1\} \) is deemed critical. Her shirking results in business failure for sure. We assume a survival probability \(P(e_i, a_i) = e_i p(a_i) \), satisfying \(p'(a_i) > 0 > p''(a_i) \) and \(p(a_i) < 1 \) over the relevant range. Active managerial consulting thus adds value and enhances the probability of success. Such services are increasingly costly, however. In supporting a portfolio of \(n \) companies, the VC’s total managerial input amounts to \(A = \sum_{i=1}^{n} a_i = an \), where \(a_i = a \) by symmetry. The VC’s effort cost \(c(A) \) is increasing and convex, the entrepreneur’s is discrete, \(l(e_i) \in \{0, \beta\} \). We specialize to isoelastic functions

\[
c(A) = \gamma \frac{A^{1+\epsilon}}{1+\epsilon}, \quad p(a) = \frac{a^{1-\theta}}{1-\theta}, \quad \epsilon > 0, \quad 0 < \theta < 1.
\]
Neither the effort of each entrepreneur nor the extent of managerial advice are verifiable and contractible. The informational asymmetry is reflected in the following sequence of decisions. First, the VC chooses a number n of start-up firms, offering an equity share s_i to each entrepreneur. Next, given n and s_i, efforts are chosen. Finally, risk is resolved and payments distributed. The model is solved by backward induction. Both parties are risk neutral. The VC’s problem is

$$\max \pi = \sum_{i=1}^{n} [e_i p_i (a_i) (1 - s_i) R - I] - c (A) \quad s.t. \quad (2)$$

$$PC^E : \pi_i^E = e_i p_i (a_i) s_i R - l (e_i) \geq 0, \quad i = 1, ..., n, \quad (i)$$

$$IC^E : p (a_i) s_i R - \beta \geq 0, \quad i = 1, ..., n, \quad (ii)$$

$$IC^F : \{a_i\} = \arg\max \{|\sum_i e_i p_i (a_i) (1 - s_i) R| - c (A)\} . \quad (iii)$$

Condition (i) is the participation constraint of entrepreneurs. To attract them, the contract must at least yield an expected income equal to the alternative income, normalized to zero. Conditions (ii) and (iii) reflect the ex post incentive constraints. Given that contracts are already fixed and investments are sunk, agents choose effort to maximize the remaining income that is still under discretion. Emphasizing the critical nature of the entrepreneurs’ effort, their choice is restricted to two alternatives, high effort and shirking.

Effort and Advice: Optimal managerial advice in (2iii) must satisfy

$$e_i p_i^0 (a_i) (1 - s_i) R = c^0 (A), \quad i = 1, \ldots, n. \quad (3)$$

Anticipating the ex post incentive constraints, the VC will always offer a profit share high enough to satisfy (2ii), eliciting high effort $e_i^* = 1$. Otherwise, she would earn no revenues. What is then the minimum profit share s_i to retain the entrepreneurs’ incentives? Taking logarithmic differentials of (2ii) and (3) at the symmetric equilibrium solution and using (1), we obtain\(^1\)

\begin{align*}
IC^E : \hat{s} = -\hat{R} - (1 - \theta) \hat{a}, \\
IC^F : (\theta + \varepsilon) \hat{a} = \hat{R} - \frac{s}{1 - s} \hat{s} - \varepsilon \hat{n}. \quad (4)
\end{align*}

\(^1\)The hat notation indicates a logarithmic differential, $\hat{a} \equiv d \ln (a) = da/a$ etc. Due to (1), $\hat{p} = (1 - \theta) \hat{a}$, $\hat{p}' = -\theta \hat{a}$, $\hat{c} = (1 + \varepsilon) \hat{A}$, and $\hat{c}' = \varepsilon \hat{A}$.

3
A higher return R and a larger profit share $1 - s$ of the VC boost marginal benefits of advice while a larger portfolio raises marginal cost of advice. The entrepreneur’s profit share may be reduced if her incentives get strengthened by a higher project value or a higher success probability $\hat{p} = (1 - \theta) \hat{a}$. Using IC^E to replace \hat{s} in (4) gives

$$\hat{a} = \frac{1}{\Psi} \left(\frac{1}{1 - s} \hat{R} - \varepsilon \hat{n} \right), \quad \Psi \equiv \theta + \varepsilon - \frac{s (1 - \theta)}{1 - s} > 0. \tag{5}$$

When the VC raises advice because of higher project value R, she boosts the firm’s survival chance. A smaller profit share then suffices to retain the entrepreneur’s incentives. With her own profit share larger, she advises even more intensively. When this cycle converges, the total effect is positive, $\Psi > 0$, and exceeds the direct effect.

Optimal Contract: Substituting (5) back into IC^E in (4) gives

$$\hat{\bar{s}} = \frac{1}{\Psi} \left[(1 - \theta) \varepsilon \hat{n} - (1 + \varepsilon) \hat{R} \right]. \tag{6}$$

When more firms call for support, the VC advises each one less. As the success rate falls, she must offer higher shares to her entrepreneurial partners to enlist their effort.

Optimal Company Portfolio: With an optimal number of firms, the contribution of the marginal start-up to profits is zero. Differentiating (2) and imposing symmetry yields

$$\pi_n \equiv \frac{d \pi}{dn} = \left[p (1 - s) R - I \right] - a \varepsilon - np \hat{R} \frac{\partial \hat{a}}{\partial n}. \tag{7}$$

Although a larger portfolio dilutes advice in (5), the marginal effect on profits is zero by the *envelope theorem* applied to (2iii). The square bracket indicates the marginal contribution of an extra firm to VC profits. The second term reflects the additional effort cost from extending managerial support to the marginal firm. The last term captures a profit destruction effect. Having more firms leads the VC to advise each one less which erodes survival chances. To preserve incentives in face of higher risk, the VC must cede a higher profit share to entrepreneurs. Insert (6) together with (2ii), replace c' by (3) and use $ap' = (1 - \theta) p$ from (1) to get

$$\pi_n \equiv \frac{d \pi}{dn} = \left[\theta p (a) (1 - s) R - I \right] - \beta \frac{1 - \theta}{\Psi (s)} \varepsilon = 0, \quad \pi_{nn} < 0, \tag{7}$$
The number of firms is determined by (7). By (5) and (6), \(n \) reduces \(a \) but raises \(s \). Since \(\Psi'(s) = -\frac{1-\theta}{(1-s)^2} < 0 \), all terms in \(\pi_n \) decline with \(n \), thereby fulfilling the sufficient condition. As more firms are financed, the profit destruction effect gets more severe. With small \(n \), on the other hand, the VC advises rather intensively and can appropriate a large profit share without losing the entrepreneur’s effort. Marginal benefits (net of effort cost) of expanding the portfolio are then rather high. A separate appendix proves

Proposition 1 A unique optimal number of portfolio companies exists, \(0 < n^* < \infty \).

If effort cost were linear (\(\varepsilon = 0 \)), advice and profit share in (5) and (6) would be independent of \(n \). The profit destruction effect would disappear, making marginal benefits a constant \(\pi_n = \theta p(1-s)R - I \geq 0 \) and leaving the individual portfolio problem indeterminate. If, on the other hand, the survival probability were linear (\(\theta = 0 \)), \(a \) would fall and \(s \) would increase in \(n \) as before. In this case, however, the benefit of an extra firm (net of marginal effort) would be unambiguously negative, making \(\pi_n < 0 \) in (7). The optimal number of firms would be driven to one if that is still profitable.

Proposition 2 The number of start-up firms in the VC’s portfolio increases with \(R \).

For a proof, apply the implicit function theorem to (7), giving \(\frac{dn}{dR} = -\frac{\pi_{nR}}{\pi_{nn}} \). the result follows from \(\pi_{nn} < 0 \) and \(\pi_{nR} = \theta p(1-s) + \theta (1-s) R p' a_R - \left[\theta p R + \frac{\varepsilon (1-\theta)^2}{(1-s)^2 \Psi^2} \right] s_R > 0 \).

Depending on her profit share, a larger return \(R \) directly raises the VC’s income by \(\theta p(1-s) \). The profit from an extra firm is also strengthened by the fact that a higher project value \(R \) encourages the VC to advise more intensively, making the firm more likely to survive, \(\theta (1-s) R p' a_R > 0 \). By reducing risk, the VC may increase her own profit share without provoking the entrepreneur to shirk which raises profits by \(-\theta p R s_R > 0 \). Finally, funding an additional start-up dilutes advice over more firms, leaving less support and a higher risk for each individual one. To preserve incentives, entrepreneurs must be compensated with a higher profit share, giving rise to the profit destruction effect
in (7). When projects become more valuable, however, the VC starts to advise more intensively and cuts the entrepreneurs’ profit share on account of lower risk. In obtaining a larger share for herself, the VC is able to alleviate the profit destruction effect by \[-\left(\frac{1-\theta}{(1-s)\eta}\right)^2 \varepsilon c^E \cdot s_R > 0, \] which boosts incentives to expand portfolio size.

3 Final Remarks

In real life, a VC finances a small number of start-up enterprises, typically fewer than ten. This note has developed a model which rationalizes this fact. It is shown that both diminishing returns to advice and convex effort cost are necessary to determine the optimal number of firms in a VC’s portfolio.

References

Separate Appendix: Proof of Proposition 1

To prove existence and uniqueness, we must first show how a and s in (7) depend on n.

Advice and Profit Share: The solution for a and s follows from (2ii) and (3). Since we must impose $p \leq 1$, the form of $p(a)$ in (1) implies an upper bound for advice of \bar{a}. By the same argument, (2ii) implies a minimum profit share \underline{s}.

$$\bar{a} \equiv (1 - \theta)^{1/(1-\theta)}, \quad \underline{s} = \beta/R. \tag{A.1}$$

Figure 1 now plots the IC^E-curve given in (2ii) in s, a-space:

$$IC^E : \quad a = E(s) = \bar{a} \cdot \left(\frac{s}{\underline{s}}\right)^{1/(1-\theta)}. \tag{A.2}$$

This curve hits the upper bound at \underline{s}, i.e. $\bar{a} = E(\underline{s})$. Since the profit share cannot exceed one, it is bounded below by $\underline{a} = E(1) = \bar{a} \underline{s}^{1/(1-\theta)}$. It is falling and convex, $E' < 0 < E''$.

The financier’s incentive constraint (3) is

$$IC^F : \quad a = F(s) = \left[\frac{R}{\gamma n^e} (1 - s)\right]^{1/(\theta+\varepsilon)}. \tag{A.3}$$

This curve is negatively sloped, $F'(s) < 0$. Since $F''(s) = \frac{-F'(s)(1-\theta-\varepsilon)}{(\theta+\varepsilon)(1-s)} \gtrless 0$, it is concave for $1 - \theta < \varepsilon$ and convex otherwise. It satisfies $F(1) = 0$. To have an interior solution with IC^E binding, we must impose

$$F(\underline{s}) \leq \bar{a} \quad \Leftrightarrow \quad (1 - \theta)^{\theta+\varepsilon} (\gamma n^e)^{1-\theta} \geq (R - \beta)^{1-\theta}. \tag{A.4}$$

For a solution to exist, the incentive constraints in Figure 1 must intersect. By equating $F(s) = E(s)$, we get $H(s) \equiv (1 - s)^{1-\theta} s^{\theta+\varepsilon} = \left(\left(1 - \theta\right) \beta \right)^{\theta+\varepsilon} (\gamma n^e)^{1-\theta} / R^{1+\varepsilon} \equiv X$. The H-schedule satisfies $H(0) = H(1) = 0$ and attains a maximum at $\bar{s} = \frac{\theta+\varepsilon}{1+\varepsilon} < 1$ which follows from $H'(s) = s^\varepsilon \left[(\theta+\varepsilon) \left(\frac{1}{s} \right)^{1-\theta} - (1-\theta) \left(\frac{1}{1-s} \right)^{\theta} \right] = 0$. Evaluating $H(s)$ at its maximum gives a condition $H(\bar{s}) > X$ for the existence of a solution,

$$H(\bar{s}) = \frac{(1 - \theta)^{1-\theta} (\theta + \varepsilon)^{\theta+\varepsilon}}{(1+\varepsilon)^{1+\varepsilon}} > \frac{[(1 - \theta) \beta]^{\theta+\varepsilon} (\gamma n^e)^{1-\theta}}{R^{1+\varepsilon}}. \tag{A.5}$$
Under this condition, $H(s) = X$ has two solutions for s, meaning that the incentive constraints in Figure 1 intersect twice. For the solutions to be in the relevant range, (A.5) and (A.4) must be satisfied simultaneously. Multiplying (A.5) by $R^{1+\varepsilon}/\beta^{\theta+\varepsilon}$ and comparing with (A.4) gives the condition
\[(1-\theta)^{1-\theta}\left(\frac{\theta+\varepsilon}{\beta}\right)^{\theta+\varepsilon}\left(\frac{R}{1+\varepsilon}\right)^{1+\varepsilon} > (1-\theta)^{\theta+\varepsilon}(\gamma n^{\varepsilon})^{1-\theta} \geq (R-\beta)^{1-\theta}. \quad \text{(A.6)}\]

Choosing R large and β small opens a wide wedge, allowing to place the middle term into this interval by choice of appropriate values for γ and n.

Of the two intersection points in Figure 1, A is the solution. To see this, note that all combinations to the north east of the E-schedule are admissible choices for the VC. For any given s, the F-curve gives the VC’s optimal advice according to (3). Applying the envelope theorem to (2), the VC maximizes profit by increasing her own profit share, i.e. by reducing s. She moves along the F-curve to the north west until the entrepreneur’s incentive constraint binds at A. Equation (4) linearizes the two constraints at the solution A. The condition $\Psi > 0$ in (5) reflects the fact that IC^E is steeper than IC^F at A.\(^2\)

The comparative statics in n is also illustrated in Figure 1. A larger number of firms n leaves the E-schedule unaffected but shifts down the F-schedule, moving the solution A to the south east. Advice per firm is reduced, and the entrepreneur’s equity share must be increased on account of higher risk.

Optimal Number of Firms: To prove proposition 1 claiming existence and uniqueness of n^*, we use $p(a) = s/a$ from IC^E. Write (7) as $\pi_n = z_1(s) - z_2(s)$. Note that n enters the condition only via its effect on $s(n)$ which is the intersection of (A.2) and (A.3) with the lowest share s. The profit creation and destruction effects, z_1 and z_2, are
\[z_1(s) \equiv \theta R \varepsilon s \left(1 - \frac{s}{s} \right) - I, \quad z_2(s) \equiv \frac{(1-\theta)\varepsilon \beta}{\Psi(s)}. \quad \text{(A.7)}\]

\(^2\)Note $E'(s) = \frac{-a}{(1-\theta)s} < 0$ and $F'(s) = \frac{-a}{(\theta+\varepsilon)(1-s)} < 0$ whence $E'(s) < F'(s) \iff \Psi(s) > 0$. 8
Evaluating these terms at the lowest admissible equity share (see Figure 1), we get

\[z_1(s) = \theta (R - \beta) - I, \quad z_2(s) = \frac{(1 - \theta) \varepsilon \beta}{\Psi(s)}. \quad (A.8) \]

Since \(\Psi' < 0 \), \(\Psi \) gets larger for low values of \(s \), making \(z_2(s) \) comparatively small. In raising \(R \) relative to \(\beta \) [see also the discussion of (A.6)], we make \(z_1(s) \) arbitrarily large, both directly and indirectly on account of a smaller \(s \). The effect on \(s \) also squeezes the profit destruction effect at the lower boundary of \(s \). With \(R \) appropriately set, we have \(z_1(s) > z_2(s) > 0 \) in Figure 2.

Expanding portfolio size \(n \) raises the equity share \(s \) on account of the “dilution of advice” effect, see Figure 1. Since \(z'_1(s) < 0 \) and \(z'_2(s) > 0 \), the profit creation effect melts down while the profit destruction effect becomes ever larger. In particular, \(\Psi(s) = 0 \) for \(s = \frac{\theta + \varepsilon}{1 + \varepsilon} < 1 \) which makes \(z_2(s) \to \infty \) for \(s \to \bar{s} \). Since both schedules are monotonic, a unique solution \(n^* \) exists in the interval \([\bar{n}, \bar{n}]\) which corresponds to the interval \([s, \bar{s}]\).

3 Evaluating at \(\bar{s} = \frac{\theta + \varepsilon}{1 + \varepsilon} \) gives \(E'(\bar{s}) = -\frac{E(\bar{s})(1 + \varepsilon)}{1 - \theta(1 + \varepsilon)} \) and \(F'(\bar{s}) = -\frac{F(\bar{s})(1 + \varepsilon)}{1 - \theta(1 + \varepsilon)} \). By (A.2) and (A.3), there is one \(\bar{n} \) such that \(E(\bar{s}) = F(\bar{s}) \), implying a tangency solution \(E'(\bar{s}) = F'(\bar{s}) \) and \(\Psi(\bar{s}) = 0 \) in Figure 1. The value of \(\bar{s} \) corresponds to the maximum of \(H(s) \) as noted prior to (A.5).
Figure 1: Optimal Advice and Profit Share

Figure 2: Optimal Number of Firms
Volkswirtschaftliche Reihe/Economic Series

Prof. Dr. Hermann **ALBECK**
Nationalökonomie, insbesondere Wirtschafts- und Sozialpolitik
http://www.uni-sb.de/rewi/fb2/albeck/

Prof. Dr. Jürgen **EICHBERGER**
Nationalökonomie, insbesondere Wirtschaftstheorie
http://w16srv.wiwi.uni-sb.de

Prof. Dr. Ralph **FRIEDMANN**
Statistik und Ökonometrie
http://www.wiwi.uni-sb.de/friedmann/

Prof. Dr. Robert **HOLZMANN**
Nationalökonomie, insbesondere Internationale Wirtschaftsbeziehungen
http://www.wiwi.uni-sb.de/lst/iwb/

PD Dr. Udo **BROLL**
http://www.wiwi.uni-sb.de/lst/iwb/

Prof. Dr. Christian **KEUSCHNIGG**
Nationalökonomie, insbesondere Finanzwissenschaft
http://www.wiwi.uni-sb.de/fiwi/

Prof. Dr. Dr. h.c. Rudolf **RICHTER**
Nationalökonomie, insbesondere Wirtschaftstheorie
http://www16srv.wiwi.uni-sb.de/richter/home-eng.htm

Prof. Dr. Dieter **SCHMIDTCHEN**
Nationalökonomie, insbesondere Wirtschaftspolitik
http://www.uni-sb.de/rewi/fb2/schmidtchen/

Prof. Dr. Volker **STEINMETZ**
Statistik und Ökonometrie
http://www.uni-sb.de/rewi/fb2/steinmetz/

9901 Christian **KEUSCHNIGG**
Public Finance
Rationalization and Specialization in Start-up Investment
9902 Jürgen **EICHBERGER**
David **KELSEY**
Economic Theory
Non-Additive Beliefs and Strategic Equilibria
9903 Jürgen **EICHBERGER**
David **KELSEY**
Economic Theory
Education Signalling and Uncertainty
9904 Christian **KEUSCHNIGG**
Wilhelm **KOHLER**
Public Finance
Eastern Enlargement of the EU: How Much is it Worth for Austria?
9905 Aymo **BRUNETTI**
Beatrice **WEDER**
International Economics
More Open Economies Have Better Governments
9906 Ralph **FRIEDMANN**
Markus **GLASER**
Statistics and Econometrics
Effects Of The Order Of Entry On Market Share, Trial Penetration, And Repeat Purchases: Empirical Evidence Or Statistical Artefact ?
9907 Rudolf **RICHTER**
Economic Theory
A Note on the Transformation of Economic Systems
9908 Rudolf RICHTER
Economic Theory
European Monetary Union: Initial Situation, Alternatives,
Prospects - -in the Light of Modern Institutional Economics

9909 Udo BROLL
Kit Pong WONG
International Economics
Capital structure, and the firm under uncertainty

9910 Udo BROLL
Kit Pong WONG
International Economics
Hedging with Mismatched Currencies

9911 Roland DEMMEL
Christian KEUSCHNIGG
Public Finance
Funded Pensions and Unemployment

9912 Jürgen EICHBERGER
David KELSEY
Economic Theory
Free Riders do not like Uncertainty

9913 Jürgen EICHBERGER
Werner GÜTH
Wieland MÜLLER
Economic Theory
Dynamic Decision Structure and Risk Taking

9914 Jürgen EICHBERGER
David KELSEY
Economic Theory
Uncertainty and Strategic Interaction in Economics

0001 Christian KEUSCHNIGG
Mirela KEUSCHNIGG
Reinhard KOMAN
Erik LÜTH
Bernd RAFFELHÜSCHEN
Public Finance
Public Debt and Generational Balance in Austria

0002 Dieter SCHMIDTCHEN
Roland KIRSTEIN
Economic Policy
Ordnung

0003 Dieter SCHMIDTCHEN
Economic Policy
Ökonomik der Religion

0004 Dieter SCHMIDTCHEN
Economic Policy
Vertrauen und Recht: Eine ökonomische Analyse

0005 Dieter SCHMIDTCHEN
Economic Policy
Homo oeconomicus und das Recht

0006 Christian KEUSCHNIGG
Søren Bo NIELSEN
Public Finance
Tax Policy, Venture Capital, and Entrepreneurship

0007 Christian KEUSCHNIGG
Mirela KEUSCHNIGG
Wilhelm KOHLER
Public Finance
The German Perspective on Eastern EU Enlargement

0008 Ralph FRIEDMANN
Markus GLASER
Statistics and Econometrics
A critique on Modelling Cross-sectional Heterogeneity with Attribute Variables and Fixed Effects

0009 Bernard STEUNENBERG
Dieter SCHMIDTCHEN
Economic Policy
The Comitology Game: European Policy-making with Parliamentary Involvement

0010 Christian KEUSCHNIGG
Ben J. HEIJDRA
Integration and Search Unemployment: An Analysis of Eastern EU Enlargement

0011 Christian KEUSCHNIGG
Søren Bo NIELSEN
Public Finance
Public Policy For Venture Capital

0012 Vesa Kanniainen
Christian Keuschnigg
The Optimal Number of Firms in a Venture Capitalist’s Portfolio